Part Number Hot Search : 
MC3843 PITE1 ST75C M2049TNG DDC142JH B2566 SKIIP30 NT2955
Product Description
Full Text Search
 

To Download IRGP4063DPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 97210
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features
* * * * * * * * * * Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 C 5 S short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package
C
IRGP4063DPBF
VCES = 600V IC = 48A, TC = 100C
G E
tSC 5s, TJ(max) = 175C
n-channel
VCE(on) typ. = 1.65V
Benefits
* High Efficiency in a wide range of applications * Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses * Rugged transient Performance for increased reliability * Excellent Current sharing in parallel operation * Low EMI
G Gate
C
E C G TO-247AC
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM IF @ TC = 25C IF @ TC = 100C IFM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current Clamped Inductive Load Current Diode Continous Forward Current Diode Continous Forward Current Diode Maximum Forward Current Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1 N*m)
Max.
600 96 48 192 192 96 48 192 20 30 330 170 -55 to +175
Units
V
c e
A
Continuous Gate-to-Emitter Voltage
V W
C
Thermal Resistance
Parameter
RJC (IGBT) RJC (Diode) RCS RJA Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
Min.
--- --- --- ---
Typ.
--- --- 0.24 80
Max.
0.45 0.92 --- ---
Units
C/W
1
www.irf.com
05/11/06
IRGP4063DPBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
V(BR)CES
V(BR)CES/TJ
Min.
600 -- -- -- -- 4.0 -- -- -- -- -- -- --
Typ.
-- 0.30 1.65 2.0 2.05 -- -21 32 1.0 450 1.95 1.45 --
Max. Units
-- -- 2.14 -- -- 6.5 -- -- 150 1000 2.91 -- 100 nA V V V
Conditions
VGE = 0V, IC = 150A
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
f
Ref.Fig CT6 CT6 5,6,7 9,10,11
V/C VGE = 0V, IC = 1mA (25C-175C) IC = 48A, VGE = 15V, TJ = 25C V IC = 48A, VGE = 15V, TJ = 150C IC = 48A, VGE = 15V, TJ = 175C VCE = VGE, IC = 1.4mA
VCE(on) VGE(th)
VGE(th)/TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
9, 10, 11, 12
gfe ICES VFM IGES
mV/C VCE = VGE, IC = 1.0mA (25C - 175C) S VCE = 50V, IC = 48A, PW = 80s A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175C IF = 48A IF = 48A, TJ = 175C VGE = 20V
8
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec trr Irr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
Min.
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Typ.
95 28 35 625 1275 1900 60 40 145 35 1625 1585 3210 55 45 165 45 3025 245 90
Max. Units
140 42 53 1141 1481 2622 78 56 176 46 -- -- -- -- -- -- -- -- -- -- pF VGE = 0V VCC = 30V ns J ns J nC IC = 48A VGE = 15V VCC = 400V
Conditions
Ref.Fig 24 CT1
IC = 48A, VCC = 400V, VGE = 15V RG = 10, L = 200H, LS = 150nH, TJ = 25C
Energy losses include tail & diode reverse recovery
CT4
IC = 48A, VCC = 400V, VGE = 15V RG = 10, L = 200H, LS = 150nH, TJ = 25C
CT4
IC = 48A, VCC = 400V, VGE=15V RG=10, L=200H, LS=150nH, TJ = 175C IC = 48A, VCC = 400V, VGE = 15V RG = 10, L = 200H, LS = 150nH TJ = 175C
fA
13, 15 CT4 WF1, WF2 14, 16 CT4 WF1 WF2 23
Energy losses include tail & diode reverse recovery
f = 1.0Mhz TJ = 175C, IC = 192A VCC = 480V, Vp =600V Rg = 10, VGE = +15V to 0V
4 CT2
FULL SQUARE 5 -- -- -- -- 845 115 40 -- -- -- -- s J ns A
VCC = 400V, Vp =600V Rg = 10, VGE = +15V to 0V TJ = 175C VCC = 400V, IF = 48A VGE = 15V, Rg = 10, L =200H, Ls = 150nH
22, CT3 WF4 17, 18, 19 20, 21
WF3
Notes: VCC = 80% (VCES), VGE = 20V, L = 200H, RG = 10. This is only applied to TO-247AC package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGP4063DPBF
100 90 80 70 350 300 250
50 40 30 20 10 0 0 25 50 75 100 125 150 175 200 T C (C)
Ptot (W)
60
IC (A)
200 150 100 50 0 0 25 50 75 100 125 150 175 200 T C (C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
1000
Fig. 2 - Power Dissipation vs. Case Temperature
1000
100
10sec 100sec
100
IC (A)
IC (A)
10
1msec
DC
10
1 Tc = 25C Tj = 175C Single Pulse 0.1 1 10 VCE (V) 100 1000
1 10 100 VCE (V) 1000
Fig. 3 - Forward SOA TC = 25C, TJ 175C; VGE =15V
200 180 160 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
Fig. 4 - Reverse Bias SOA TJ = 175C; VGE =15V
200 180 160 140
ICE (A)
ICE (A)
120 100 80 60 40 20 0 0 2 4 6
120 100 80 60 40 20 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
8
10
0
2
4
6
8
10
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s
VCE (V)
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s
www.irf.com
3
IRGP4063DPBF
200 180 160 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
200 180 160 140 120 -40c 25C 175C
ICE (A)
120 100 80 60 40 20 0 0 2 4 6 8 10
IF (A)
100 80 60 40 20 0 0.0
1.0
2.0 VF (V)
3.0
4.0
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175C; tp = 80s
20 18 16 14
Fig. 8 - Typ. Diode Forward Characteristics tp = 80s
20 18 16 14
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
VCE (V)
12
ICE = 24A ICE = 48A ICE = 96A
12 10 8 6 4 2 0
ICE = 24A ICE = 48A ICE = 96A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = -40C
20 18 16 14
VCE (V)
ICE (A)
200 180 160 140
Fig. 10 - Typical VCE vs. VGE TJ = 25C
T J = 25C T J = 175C
12 10 8 6 4 2 0 5 10 VGE (V)
ICE = 24A ICE = 48A ICE = 96A
120 100 80 60 40 20 0
15
20
0
5 VGE (V)
10
15
Fig. 11 - Typical VCE vs. VGE TJ = 175C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10s
4
www.irf.com
IRGP4063DPBF
6000 5000 EOFF 4000
1000
Swiching Time (ns)
Energy (J)
tdOFF 100 tdON tF tR
3000 2000 1000 0 0 50 IC (A)
EON
10
100 150
0
20
40 IC (A)
60
80
100
Fig. 13 - Typ. Energy Loss vs. IC TJ = 175C; L = 200H; VCE = 400V, RG = 10; VGE = 15V
5000 4500 4000 EOFF EON
Fig. 14 - Typ. Switching Time vs. IC TJ = 175C; L = 200H; VCE = 400V, RG = 10; VGE = 15V
1000 tdOFF
Swiching Time (ns)
Energy (J)
3500 3000 2500 2000 1500 1000 0 25 50 75
tR 100 tF
tdON
10
100 125
0
25
50
75
100
125
Rg ()
RG ()
Fig. 15 - Typ. Energy Loss vs. RG TJ = 175C; L = 200H; VCE = 400V, ICE = 48A; VGE = 15V
45 40 35 30
IRR (A)
Fig. 16 - Typ. Switching Time vs. RG TJ = 175C; L = 200H; VCE = 400V, ICE = 48A; VGE = 15V
45
RG = 10
40 35
IRR (A)
25 20 15 10 5 0 0 20
RG = 22 RG = 47 RG = 100
30 25 20 15 10
40 IF (A)
60
80
100
0
25
50
75
100
125
RG ()
Fig. 17 - Typ. Diode IRR vs. IF TJ = 175C
Fig. 18 - Typ. Diode IRR vs. RG TJ = 175C
www.irf.com
5
IRGP4063DPBF
45 40 35
4000 3500
96A
3000
QRR (C)
48A
IRR (A)
30 25 20 15 10 0 200 400 600 800 1000 diF /dt (A/s)
10
2500 2000 1500 1000
100 47
22 24A
0
500
1000
1500
diF /dt (A/s)
Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 48A; TJ = 175C
900 800 700 600 RG = 22 RG = 10
Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175C
18 16 14
Time (s)
400 350 300
Energy (J)
Current (A)
500 400 300 200 100 0 0 20 40 IF (A) 60 80 100 RG = 100 RG = 47
12 10 8 6 4 8 10 12 14 16 18 VGE (V)
250 200 150 100 50
Fig. 21 - Typ. Diode ERR vs. IF TJ = 175C
10000 Cies
Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25C
16 14 12 10 8 6 4 2 0 V CES = 300V V CES = 400V
Capacitance (pF)
1000
Coes 100 Cres 10 0 20 40 60 80 100 VCE (V)
VGE, Gate-to-Emitter Voltage (V)
0
25
50
75
100
Q G, Total Gate Charge (nC)
Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 24 - Typical Gate Charge vs. VGE ICE = 48A; L = 600H
6
www.irf.com
IRGP4063DPBF
1 D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
R1 R1 J 1 2 R2 R2 R3 R3 3 C 3
0.01
J
1
2
Ri (C/W) i (sec) 0.0872 0.000114 0.1599 0.001520 0.2020 0.020330
0.001
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01
J J 1
R1 R1 2
R2 R2
R3 R3 3 C 3
0.01
Ri (C/W) i (sec) 0.2774 0.000908 0.3896 0.2540 0.003869 0.030195
1
2
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1
0.0001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGP4063DPBF
L
L
0
D UT 1K
VC C
80 V Rg
DU T
4 80V
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp / DU T
L
4x
DC
360V
- 5V DU T / D RIVER
Rg
DUT
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
C force
400H D1 10K C sense
DUT
Rg
VCC
G force
DUT
0.0075
E sense E force
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
8
www.irf.com
IRGP4063DPBF
700 600 500 400 VCE (V) 300
90% ICE
140 120 100 80
600 500 tr 400 300 200
10% test TEST CURRE 90% test
120 100 80 60 40 20 0 EON -20 7.00
60 40 20 0 -20 1.10
200 100 0 -100 -0.40
5% VCE 5% ICE
VCE (V)
tf
100 0 -100 6.20
5% VCE
EOFF Loss 0.10 0.60
6.40
6.60 Time (s)
6.80
Time(s)
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175C using Fig. CT.4
60 50 40 30 20 IRR (A) 10 0 -10 -20 -30 -40 -0.15 Peak IRR
10% Peak IRR
600 500
QRR tRR
600 500 VCE ICE 400 300 200 100 0 -100 10.00
400 300 200 100 0 -100 -5.00
VCE (V)
-0.05
0.05
0.15
0.25
0.00
5.00
time (S)
Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175C using Fig. CT.4
time (S) Fig. WF4 - Typ. S.C. Waveform @ TJ = 25C using Fig. CT.3
www.irf.com
ICE (A)
9
IRGP4063DPBF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
@Y6HQG@) UCDTADTA6IADSAQ@"A XDUCA6TT@H7GA GPUA8P9@A$%$& 6TT@H7G@9APIAXXA"$A! DIAUC@A6TT@H7GAGDI@AACA Ir)AAQAAvAhriyAyvrAvv vqvphrAAGrhqArrA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S
,5)3(
A "$C $%AAAAAAAAAAA$&
96U@A8P9@ @6SA A2A! X@@FA"$ GDI@AC
TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/06
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRGP4063DPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X